Staff and leadership

Space flight programs

Manned programs

X-15 rocket plane

Project Mercury

Project Gemini

Apollo program


Apollo–Soyuz Test Project

Space Shuttle program

International Space Station

Commercial programs

Beyond Low Earth Orbit program

Explorer 1

Explorer 1 was the first satellite launched by the United States, and was part of the U.S. participation in the International Geophysical Year. The mission followed the first two satellites the previous year; the Soviet Union's Sputnik 1 and 2, beginning the Cold War Space Race between the two nations.
Explorer 1 was launched on January 31, 1958 at 22:48 Eastern Time (February 1, 03:48 UTC) atop the first Juno booster from LC-26 at the Cape Canaveral Missile Annex, Florida. It was the first spacecraft to detect the Van Allen radiation belt, returning data until its batteries were exhausted after nearly four months. It remained in orbit until 1970, and has been followed by more than 90 scientific spacecraft in the Explorer series.
Data from the scientific instruments was transmitted to the ground by two antennas. A 60 milliwatt transmitter fed a dipole antenna consisting of two fiberglass slot antennas in the body of the satellite operating on 108.03 MHz, and four flexible whips forming a turnstile antenna were fed by a 10 milliwatt transmitter operating on 108.00 MHz.
The Explorer 1 payload consisted of the Iowa Cosmic Ray Instrument without a tape data recorder which was not modified in time to make it onto the spacecraft. The real-time data received on the ground was therefore very sparse and puzzling showing normal counting rates and no counts at all. The later Explorer 3 mission, which included a tape data recorder in the payload, provided the additional data for confirmation of the earlier Explorer 1 data.
Explorer 1 changed rotation axis after launch. The elongated body of the spacecraft had been designed to spin about its long (least-inertia) axis but refused to do so, and instead started precessing due to energy dissipation from flexible structural elements. Later it was understood that on general grounds, the body ends up in the spin state that minimizes the kinetic rotational energy for a fixed angular momentum (this being the maximal-inertia axis). This motivated the first further development of the Eulerian theory of rigid body dynamics after nearly 200 years-to address this kind of momentum-preserving energy dissipation.