Staff and leadership

Space flight programs

Manned programs

X-15 rocket plane

Project Mercury

Project Gemini

Apollo program


Apollo–Soyuz Test Project

Space Shuttle program

International Space Station

Commercial programs

Beyond Low Earth Orbit program

Moon landing

A Moon landing is the arrival of a spacecraft on the surface of the Moon. This includes both manned and unmanned (robotic) missions. The first human-made object to reach the surface of the Moon was the Soviet Union's Luna 2 mission, on 13 September 1959.
The United States' Apollo 11 was the first manned mission to land on the Moon, on 20 July 1969. There have been six manned U.S. landings (between 1969 and 1972) and numerous unmanned landings, with no soft landings happening from 22 August 1976 until 14 December 2013.
More recently, other nations have crashed spacecraft on the surface of the Moon at speeds of around 8,000 kilometres per hour (5,000 mph), often at precise, planned locations. These have generally been end-of-life lunar orbiters that, because of system degradations, could no longer overcome perturbations from lunar mass concentrations ("masscons") to maintain their orbit. Japan's lunar orbiter Hiten impacted the Moon's surface on 10 April 1993. The European Space Agency performed a controlled crash impact with their orbiter SMART-1 on 3 September 2006.
The speed of a crash landing on its surface is typically between 70 and 100% of the escape velocity of the target moon, and thus this is the total velocity which must be shed from the target moon's gravitational attraction for a soft landing to occur. For Earth's Moon, the escape velocity is 2.38 kilometres per second (1.48 mi/s). The change in velocity (referred to as a delta-v) is usually provided by a landing rocket, which must be carried into space by the original launch vehicle as part of the overall spacecraft. An exception is the soft moon landing on Titan carried out by the Huygens probe in 2005. As the moon with the thickest atmosphere, landings on Titan may be accomplished by using atmospheric entry techniques that are generally lighter in weight than a rocket with equivalent capability.
The U.S. response to these Soviet achievements was to greatly accelerate previously existing military space and missile projects and to create a civilian space agency, NASA. Military efforts were initiated to develop and produce mass quantities of intercontinental ballistic missiles (ICBMs) that would bridge the so-called missile gap and enable a policy of deterrence to nuclear war with the Soviets known as mutual assured destruction or MAD. These newly developed missiles were made available to civilians of NASA for various projects (which would have the added benefit of demonstrating the payload, guidance accuracy and reliabilities of U.S. ICBMs to the Soviets).